如何用三个全等直角三角形证明勾股定理如何用一个直角三角形证明勾股定理

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 08:20:32
如何用三个全等直角三角形证明勾股定理如何用一个直角三角形证明勾股定理

如何用三个全等直角三角形证明勾股定理如何用一个直角三角形证明勾股定理
如何用三个全等直角三角形证明勾股定理
如何用一个直角三角形证明勾股定理

如何用三个全等直角三角形证明勾股定理如何用一个直角三角形证明勾股定理
到底用几个证明啊
用一个直角三角形是这样证明的.
直角三角形为ABC C为直角.
过C点做AB上的高 利用三角形相似.
三角形ADC相似于三角形ACB
AD:AC=AC:AB
得到 AC的平方=AD*AB
同理可得:
BC的平方=BD*AB
相加=AC的平方+BC的平方=AD*AB+AB*BD=AB(AD+BD)=AB*AB 证明完毕

可以用三角形的面积相等,就可以了~

勾股定理的证明
【证法1】(课本的证明)









做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
, ...

全部展开

勾股定理的证明
【证法1】(课本的证明)









做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
, 整理得 .
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于 .
∴ . ∴ .
【证法3】(赵爽证明)
以a、b 为直角边(b>a), 以c为斜
边作四个全等的直角三角形,则每个直角
三角形的面积等于 . 把这四个直角三
角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于 .
∴ .
∴ .
【证法4】(1876年美国总统Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一个等腰直角三角形,
它的面积等于 .
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD‖BC.
∴ ABCD是一个直角梯形,它的面积等于 .
∴ .
∴ .
【证法5】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90º.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90º.
即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则

,
∴ .

【证法6】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP‖BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90º,QP‖BC,
∴ ∠MPC = 90º,
∵ BM⊥PQ,
∴ ∠BMP = 90º,
∴ BCPM是一个矩形,即∠MBC = 90º.
∵ ∠QBM + ∠MBA = ∠QBA = 90º,
∠ABC + ∠MBA = ∠MBC = 90º,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF.
从而将问题转化为【证法4】(梅文鼎证明).
【证法7】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点
L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于 ,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 = .
同理可证,矩形MLEB的面积 = .
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
∴ ,即 .
【证法8】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中,
∵ ∠ADC = ∠ACB = 90º,
∠CAD = ∠BAC,
∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB,
即 .
同理可证,ΔCDB ∽ ΔACB,从而有 .
∴ ,即 .
【证法9】(杨作玫证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.
∵ ∠BAD = 90º,∠PAC = 90º,
∴ ∠DAH = ∠BAC.
又∵ ∠DHA = 90º,∠BCA = 90º,
AD = AB = c,
∴ RtΔDHA ≌ RtΔBCA.
∴ DH = BC = a,AH = AC = b.
由作法可知, PBCA 是一个矩形,
所以 RtΔAPB ≌ RtΔBCA. 即PB =
CA = b,AP= a,从而PH = b―a.
∵ RtΔDGT ≌ RtΔBCA ,
RtΔDHA ≌ RtΔBCA.
∴ RtΔDGT ≌ RtΔDHA .
∴ DH = DG = a,∠GDT = ∠HDA .
又∵ ∠DGT = 90º,∠DHF = 90º,
∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,
∴ DGFH是一个边长为a的正方形.
∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .
∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).
用数字表示面积的编号(如图),则以c为边长的正方形的面积为

∵ = ,

∴ = . ②
把②代入①,得

= = .
∴ .

【证法10】(李锐证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).
∵ ∠TBE = ∠ABH = 90º,
∴ ∠TBH = ∠ABE.
又∵ ∠BTH = ∠BEA = 90º,
BT = BE = b,
∴ RtΔHBT ≌ RtΔABE.
∴ HT = AE = a.
∴ GH = GT―HT = b―a.
又∵ ∠GHF + ∠BHT = 90º,
∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,
∴ ∠GHF = ∠DBC.
∵ DB = EB―ED = b―a,
∠HGF = ∠BDC = 90º,
∴ RtΔHGF ≌ RtΔBDC. 即 .
过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE
= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌
RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 .
由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.
∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,
∴ ∠FQM = ∠CAR.
又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,
∴ RtΔQMF ≌ RtΔARC. 即 .
∵ , , ,
又∵ , , ,

=
= ,
即 .


【证法11】(利用切割线定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得

=
=
= ,
即 ,
∴ .

【证法12】(利用多列米定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有

∵ AB = DC = c,AD = BC = a,
AC = BD = b,
∴ ,即 ,
∴ .

【证法13】(作直角三角形的内切圆证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.
∵ AE = AF,BF = BD,CD = CE,

= = r + r = 2r,
即 ,
∴ .
∴ ,
即 ,
∵ ,
∴ ,
又∵ = =
= = ,
∴ ,
∴ ,
∴ , ∴ .
【证法14】(利用反证法证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
假设 ,即假设 ,则由
= =
可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.
在ΔADC和ΔACB中,
∵ ∠A = ∠A,
∴ 若 AD:AC≠AC:AB,则
∠ADC≠∠ACB.
在ΔCDB和ΔACB中,
∵ ∠B = ∠B,
∴ 若BD:BC≠BC:AB,则
∠CDB≠∠ACB.
又∵ ∠ACB = 90º,
∴ ∠ADC≠90º,∠CDB≠90º.
这与作法CD⊥AB矛盾. 所以, 的假设不能成立.
∴ .

【证法15】(辛卜松证明)






设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 = .
∴ ,
∴ .

【证法16】(陈杰证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).
在EH = b上截取ED = a,连结DA、DC,
则 AD = c.
∵ EM = EH + HM = b + a , ED = a,
∴ DM = EM―ED = ―a = b.
又∵ ∠CMD = 90º,CM = a,
∠AED = 90º, AE = b,
∴ RtΔAED ≌ RtΔDMC.
∴ ∠EAD = ∠MDC,DC = AD = c.
∵ ∠ADE + ∠ADC+ ∠MDC =180º,
∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,
∴ ∠ADC = 90º.
∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形.
∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,
∴ ∠BAF=∠DAE.
连结FB,在ΔABF和ΔADE中,
∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,
∴ ΔABF ≌ ΔADE.
∴ ∠AFB = ∠AED = 90º,BF = DE = a.
∴ 点B、F、G、H在一条直线上.
在RtΔABF和RtΔBCG中,
∵ AB = BC = c,BF = CG = a,
∴ RtΔABF ≌ RtΔBCG.
∵ , , ,


=
=
=
∴ .

收起

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的...

全部展开

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们
图1 直角三角形

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2

亦即:
a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2+股2)(1/2)

亦即:
c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2

化简后便可得:
a2+b2=c2

亦即:
c=(a2+b2)(1/2)
图2 勾股圆方图

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”
参考资料: http://www.mmit.stc.sh.cn/telecenter/CnHisScience/ggdl.h

收起

下为赵爽证明——
青朱出入图三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青方并成弦方。依其面积关系有a^2+b^2=c^2.由于朱方、青方各有一部分在玄方内,那一部分就不动了。
以勾为边的的正方形为朱方,以股为边的正方形为青方。以盈补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个...

全部展开

下为赵爽证明——
青朱出入图三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青方并成弦方。依其面积关系有a^2+b^2=c^2.由于朱方、青方各有一部分在玄方内,那一部分就不动了。
以勾为边的的正方形为朱方,以股为边的正方形为青方。以盈补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c……2 ).由此便可证得a^+b^2=c^2;
[编辑本段]伽菲尔德证明勾股定理的故事
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
如下:
在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。
勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,
a的平方+b的平方=c的平方;
说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理称为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。
举例:如直角三角形的两个直角边分别为3、4,则斜边c的平方;= a的平方+b的平方=9+16=25即c=5
则说明斜边为5。
[编辑本段]勾股定理的5种证明方法
这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。
有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

【证法1】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则
,
∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2


【证法2】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP‖BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90°,QP‖BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一个矩形,即∠MBC = 90°.
∵ ∠QBM + ∠MBA = ∠QBA = °,
∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2

【证法3】(赵浩杰证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.
分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直线上,
所以a^2+b^2=c^2

【证法4】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 =.
同理可证,矩形MLEB的面积 =.
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
∴ 即a的平方+b的平方=c的平方

【证法5】欧几里得的证法
《几何原本》中的证明
在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
其证明如下:
设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的
图没法弄啊,自己读懂了画吧
参考资料: 百科

收起

斜边²=底边²+直角边²
例如:斜边=13CM,底边=5cm,求直角边:
13²-5²=169-25=144=12²