取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面高度%C取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 03:32:50
取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面高度%C取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面

取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面高度%C取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面
取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面高度%C
取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面高度为h,质量为m的人造地球卫星的引力势能为 ,那么该人造卫星的动能为 ;总机械能为

取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面高度%C取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面
引力势能为E1=-G*M/(R+h)
(老师说的,暂且没有推导过程)
动能为E2=1/2*mV^2=1/2*m*GM/(R+h)=1/2GMm/(R+h)

引力是质量的固有本质之一。每一个物体必然与另一个物体互相吸引。尽管引力的本质还有待于确定,但人们早已觉察到了它的存在和作用。接近地球的物体,无一例外地被吸引朝向地球质量的中心。因为在地球表面上的任何物体,与地球本身的质量相比,实在是微不足道的。
但是地球并非一个静止的球体,它所具有的复杂运动形式,使得原来所具有的引力产生了某些变化。因为在这个转动球体上的各种物体,都有一个保持它们自己作直...

全部展开

引力是质量的固有本质之一。每一个物体必然与另一个物体互相吸引。尽管引力的本质还有待于确定,但人们早已觉察到了它的存在和作用。接近地球的物体,无一例外地被吸引朝向地球质量的中心。因为在地球表面上的任何物体,与地球本身的质量相比,实在是微不足道的。
但是地球并非一个静止的球体,它所具有的复杂运动形式,使得原来所具有的引力产生了某些变化。因为在这个转动球体上的各种物体,都有一个保持它们自己作直线运动的倾向。于是地球自转时的离心效应就产生了,其结果是一个与引力方向相反的力也同时发挥着作用,特别在靠近赤道的地方更是如此。因此,作为共同使用的名词——重力,这实际上是被这个离心力和其它较小的有关效应所减小了的净引力。我们已经知道这样一种事实,一个物体在极地重189磅时,拿到赤道仅仅重188磅。
假如地球表面完全为自由流动的液态水所覆盖,那么这种液体水的表面呈现一个扁球体,在两极稍平,而在赤道膨胀,这在前边已经作了简要的叙述。这个理想的形状,称为地球体,它将完美地同全部的重力、转动力相平衡。
牛顿定律对于引力的表达是重力遵循的基础。众所周知,该定律的基本表述为:m1与m2这两个质点之间的引力,正比于二者质量的乘积,反比于这两个质点中心之间距离的平方,即
如果说此处的F为作用在m2上的力,那么R1为从m1指向m2的单位向量,r是m1与m2之间的距离,而A是万有引力常数。加上负号表示着力是互相吸引的。
很明显,引力是存在于自然界中强度最小的相互作用力。最近还发现,A的数值也不是常数,而是随着时间有缓慢的减少。它的这种变化,是由许多原因造成的,其中之一被认为是由于地球半径随着时间而增加,这样反过来,又必将对地球的发展历史带来深刻的影响。可是,所得出的A值变化速率是如此之小,以至于它在整个地球演化过程中,即在几十亿年的时间内,其变化速率只大约为1%,所以在实际应用上并无什么真正的价值。
由于地球(假定为m1)这个巨大质量的存在,使得m2所产生的加速度,称做重力加速度。它最早是被伽利略在意大利的比萨斜塔上测定的。在地球表面上这个数值一般定为980厘米/秒2,通常又将1厘米/秒2称为“伽”(gal),用以纪念这位伟大的科学家。
重力场是守恒的,也就是说在重力场中,移动一个物体所做的功,独立于它所经过的路径,而仅仅取决于它的终点。事实上,假如该质量最终转到它原来出发时所处的位置时,其净能量的消耗等于0,而不管它在其间所走过的道路是什么。这在自然地理面中,是可以很轻易得到证明的。寻常所见的水分循环,就是一个很好的说明重力守恒的例子。一滴水从海洋面上被蒸发,克服重力,进入大气,这是外界做功的结果。待它由空中重新回归到海洋时(而不管它是直接落入海洋,还是被运送到几千公里之外,又随着河川迳流回到海洋来的),放出了原先克服重力时的那部分功,遵循着重力守恒,使得净能量的消耗等于0。类似的例子,在地表面是很多的。
另外一种对重力守恒的表达方式就是:动能和势能之和在一个封闭体系中为一常数,这涉及到动能与势能的互相转化,也是我们要经常使用的一个规律。同时要记住引力是一个向量,它的方向是沿着地球的质量中心与另外一个物体质量中心的连线,这在进行向量分析时,是极为有用的。
地球表面的重力大小,一般来说与五个因素有关,它们是地理纬度、海拔高度、周围地体的地形、地球潮汐与地表以下物质的密度。这最后一个因子,仅仅在进行重力测量中才有价值,一般情况下它对重力变化的影响,要比前四个因子的联合效应小的多。例如,从赤道到两极,重力随着纬度变化的数量大约为5伽,而油田勘探中的较大重力异常是10毫伽,只相当于上述数字的1/500。在1930年,国际大地测量和地球物理协会采用了一个公式,给出了在地球这个椭球体上任意一点的重力加速度为:
g=g0(1+αsin2Φ+βsin22Φ) (5.9)
g——重力加速度;g0——在赤道上的重力加速度,它等于978.0490厘米/秒2;Φ——纬度,常数α及β分别是0.0052884和-0.0000059。
自从1930年以来,由于在重力测量中获取了大量的资料,特别是通过人造地球卫星的准确测定,上式中的常数已经有了进一步的改动。
从自然地理学的角度来看,我们的着眼点不在于寻求计算重力或进行订正的准确公式,而在于利用这种重力分析的基本原理,阐述物质在进入自然地理面和输出到环境时的爱力状况,在这些受力当中,重力是特别应当考虑的一项。举凡地形的改变、物质的搬运和堆积、气团的运动、水分的循环、生物的生长,甚至于地球物质的调整等,离开了重力的分析,就不可能得出正确的结果。
前面已经讲过,重力最为明显的表达,一般都在地球固体表面之上。在其下并非重力消失了,只是不容易有如固体表面之上那样明显地看出来罢了,此外作为研究的对象来说,我们亦不去特别关注地层深处的重力状况,而只接受它所带来的对地表造成的后果。进而看到,在海平面之上陆地面积约占全球总表面积的29%,以雨和雪降下来的水,必然经受重力的作用回归到海洋中去。这样,每一次落到地表上的降水,都具有比例于本身质量和海平面以上高度的乘积,这样数值的能量,这就是它所具的势能。
在陆地地表,亦有个别的点低于海平面,例如我国的吐鲁番盆地,美国加利福尼亚的死谷等,它们之所以能在陆面上保持这种例外的情况,一是由于其面积小,二是由于这些盆地均处于干旱区,很少有降水发生。假如把它们移到湿润地区,这种低于海平面的状况决不会保持很久,在重力的参与下,很快就要被水充满或被水所带来的风化物质填注,以补足海平面在全球延伸中的“漏洞”。
重力在自然地理面中的表现,既平常又深刻,对此应有充分的认识,现粗略地讨论一下重力在改造地表形态上的作用。陆地表面由于风化作用而造成的松散物质,在一定的条件下,由于力的作用是要移动的。无论是从高处到低处的滚动、滑落、崩塌,还是通过河流的输运,风的挟带等,其中一个极重要的因素就是重力的参与。
我们以一个在坡面上运动的岩块为例,简要分析一下重力的作用。由分析得知,重力的一个分力,即岩块向下滑动的力,比例于所处坡度的正弦,当然还取决于这个坡面的摩擦系数。一克重的岩块在坡度为45°时,向下滑动的分力为0.7克;而当该坡度等于60°时,这个分力将增加到0.87克(如图5.5)。由于摩擦系数很少有大于1的状况,因此单凭摩擦系数的阻抗,在坡度大于45°时,将支持不住重力所引起的向下滑动的分力。事实上,比40°更为陡峭的自然坡度在全球是很少见的,因为如果有超出40°的角度时,重力作用将比较迅速地对此加以改变,由此可以看出重力改变地表形态的作用来。
在讨论地球重力的同时,我们对于其它星体产生的类似于地球引力的作用力,也要加以必要的重视。最主要的就是月亮和太阳对地球的引力。
月亮和地球的距离很近,约等于三十个地球的直径,根据万有引力定律,引力与距离的平方成反比,因而尽管月球的质量不算太大,但对于地球上各个质点的引力却相对的要大一些。太阳的质量很大,约等于二千亿亿亿吨,是地球质量的三十三万倍,但由于地球与太阳之间的距离太远,是月球—地球之间距离的四百倍,因此,它对地球的引力,只是月球对地球引力的46%。所以,地球上的潮汐现象是太阳和月亮二者作用力的合成,这里我们只需了解月亮的引力作用比太阳更大这一点就够了。
地球的质量是月球的81.5倍,因此月—地系统的公共质量中心,必然大大地偏向于地球一侧,大约在距地心0.73倍地球半径的地方,两个球体每月绕着这个共同的质量中心转动。
月球对于地球的引潮力固然重要,但这个引潮力的数量值却并不太大,只相当于地球重力的千万分之一。对于地球上一个10吨重的物体来说(即重力等于10吨),其引潮力仅有1克。这样小的力,人通常是感觉不出来的。但地球对这种不大的引潮力,反应却十分明显。很早以前,就发现海水在一日内有规律的涨落(潮汐)与月球有密切关系。此外,地球不是一个刚体,一般都认为它是一个具有弹性的球体,对于具这样一种特性的球体,在引潮力的作用下,地球的固体岩石地壳也会产生“潮汐”现象,叫做固体潮,每天都要升降达30厘米左右。当然地球对月球的引潮力更大,它使得月壳突起和下落的幅度达到3公里左右。
与此同时,地球上的大气,也因为这种引潮力,每天都产生着“大气潮汐”。至于海洋这个庞大的水体,其上的潮汐现象就更为明显了,加拿大东海岸的芬地湾蒙克顿港,最大潮差达19.6米,堪称世界前茅。我国钱塘江口的最大潮差记录为8.9米,当然各个地方由于所处位置及周围环境的不同,潮差也是不相同的。
月球和太阳的引力在塑造陆地表面的地形方面,也是一个具有一定意义的因素。康德在1775年,曾率先提出把涨潮作为改变地球旋转速度的一个因素。近年来,在探讨关于地震的预测预报中,也有人把潮汐力作为一个对地震起因的触发因子。此外,对于自然地理来说,更为明显的则是潮汐对于海陆交界处地形的变更作用,对于岸线的影响作用,以及对于波浪运动的作用等

收起

取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面高度%C取离开地球无限远处为引力势能的零点,设地球的质量为M,半径为R万有引力恒量为G,则距地面 取离地球无限远处为重力势能的零点,设地球的质量为M,半径为R,引力常量为G,距地面高为h,质量为m的人造卫星的势能为-GMm/(r+R),则该卫星的总机械能为多少?打错了 r是h 已知地球的半径为R,质量为M,现有一质量为m的物体,在离地面高度为2R处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无穷远处为势能零点,则系统的引力势能为 有关引力势能的基础大学物理题,已知地球半径为R,质量为M.现有一质量为m的物体,在离地面高度为2R处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为多少?和取无穷远处为势能 取离开地面无限远处重力势能为0,设地球的质量为M,半径为R,万有引力恒量为G,距地面高为h,质量为m的人造地球卫星的势能为-G*M*m/(R+h),则该地球卫星的总机械能为? 地球半径为R,质量为M,一质量为m的物体,在离地面高度为2R处.若取地面为势能零点,则系统的引力势能为若取无穷远处为零势能点 则系统的引力势能是? 令无穷远处为引力势能零点是什么意思 己知地球半径为R,质量为M.现有一质量为m的物体处在离地面高度2R处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为- 已知地球质量为M,半径为R,现有一质量为m的人造卫星在离地面2R处.以地球和卫星为系,取地面的引力势能为0,则系统的引力势能为多少?若取无穷远处的引力势能为0,则系统的引力势能为多少 大学物理(1)已知地球的半径为R,质量为M.现有一质量为m的物体,离地面的2R处.以地球和物体为系统,若取地面为势能零点,则系统的引力势能为( ),若取无穷远为势能零点,则系统的引力势能 如果势能零点定在无穷远处,那么引力中心的势能是多大呢? 当取无限远处的电势能为0时,各定态的电势能均为负值,为什么 地球半径为R,质量为M,一质量为m的物体,在离地面高度为2R处.若取地面为势能零点,则系统的引力势能为? 为什么大气层外“地心引力势能”为零?我理解说无限远处势能为零,靠近过程中引力做正功,所以越靠近地球外的某个点“地心引力势能”越负.但地表势能也是零,如果说把一个物体从地表慢 重力势能EP=mgh实际上是万有引力势能在地面附近的近似表达式,其更精确的表达式为EP=-GMm/r,式中G为万有引力恒量,M为地球质量,m为物体质量,r为物体到地心的距离,并以无限远处引力势能为 地球质量为M,半径为R,自传角速度为w.引力常量为G,如果规定物体离地球无穷远处势能为0,地球质量为M,半径为R,自传角速度为w,引力常量为G,如果规定物体在离地球无穷远处势能为0,则质量为m的 把无穷远处定为引力势能的零势能点时,引力势能表达式的推导 重力势能为什么经常要定义无限远处为0,有什么意义?如果定义无限远处为0势能参考点,那么所求点的高度与参考点的距离不明,势能都是相对的,这种情况怎么求重力势能大小?为什么不定义地